Prediction of protein secondary structure at better than 70% accuracy.
نویسندگان
چکیده
We have trained a two-layered feed-forward neural network on a non-redundant data base of 130 protein chains to predict the secondary structure of water-soluble proteins. A new key aspect is the use of evolutionary information in the form of multiple sequence alignments that are used as input in place of single sequences. The inclusion of protein family information in this form increases the prediction accuracy by six to eight percentage points. A combination of three levels of networks results in an overall three-state accuracy of 70.8% for globular proteins (sustained performance). If four membrane protein chains are included in the evaluation, the overall accuracy drops to 70.2%. The prediction is well balanced between alpha-helix, beta-strand and loop: 65% of the observed strand residues are predicted correctly. The accuracy in predicting the content of three secondary structure types is comparable to that of circular dichroism spectroscopy. The performance accuracy is verified by a sevenfold cross-validation test, and an additional test on 26 recently solved proteins. Of particular practical importance is the definition of a position-specific reliability index. For half of the residues predicted with a high level of reliability the overall accuracy increases to better than 82%. A further strength of the method is the more realistic prediction of segment length. The protein family prediction method is available for testing by academic researchers via an electronic mail server.
منابع مشابه
Protein Secondary Structure Prediction: a Literature Review with Focus on Machine Learning Approaches
DNA sequence, containing all genetic traits is not a functional entity. Instead, it transfers to protein sequences by transcription and translation processes. This protein sequence takes on a 3D structure later, which is a functional unit and can manage biological interactions using the information encoded in DNA. Every life process one can figure is undertaken by proteins with specific functio...
متن کاملThe International Journal of
The problem addressed in this research is to evaluate the two protein secondary structure methods (neural networks and support vector machines) and then make a comparison among both the methods. From the experimental results which are obtained from the quantitative comparison of Neural Network and Support Vector Machine for Protein Secondary Structure Prediction we can conclude that, when given...
متن کاملRAP: Refine a Prediction of Protein Secondary Structure
RAP aims to refine protein secondary structure prediction from one of famous prediction tools. Protein secondary structure prediction has been extensively discussed for almost 50 years and the machine learning is one of feasible methods for it with more than 70% accuracy. PSIPRED, PHD and PROF are well-known machine learning approaches and based on the three-state prediction: helix, strand, and...
متن کاملContext-Based Features Enhance Protein Secondary Structure Prediction Accuracy
We report a new approach of using statistical context-based scores as encoded features to train neural networks to achieve secondary structure prediction accuracy improvement. The context-based scores are pseudo-potentials derived by evaluating statistical, high-order inter-residue interactions, which estimate the favorability of a residue adopting certain secondary structure conformation withi...
متن کاملReview: protein secondary structure prediction continues to rise.
Methods predicting protein secondary structure improved substantially in the 1990s through the use of evolutionary information taken from the divergence of proteins in the same structural family. Recently, the evolutionary information resulting from improved searches and larger databases has again boosted prediction accuracy by more than four percentage points to its current height of around 76...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular biology
دوره 232 2 شماره
صفحات -
تاریخ انتشار 1993